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Figure 23.37 A GFI compares currents by using both to induce an emf in the same coil. If the currents are equal, they will induce equal but

opposite emfs.

Another induction-based safety device is the isolation transformer, shown in Figure 23.38. Most isolation transformers have
equal input and output voltages. Their function is to put a large resistance between the original voltage source and the device
being operated. This prevents a complete circuit between them, even in the circumstance shown. There is a complete circuit
through the appliance. But there is not a complete circuit for current to flow through the person in the figure, who is touching
only one of the transformer’s output wires, and neither output wire is grounded. The appliance is isolated from the original
voltage source by the high resistance of the material between the transformer coils, hence the name isolation transformer. For
current to flow through the person, it must pass through the high-resistance material between the coils, through the wire, the
person, and back through the earth—a path with such a large resistance that the current is negligible.
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transformer
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Figure 23.38 An isolation transformer puts a large resistance between the original voltage source and the device, preventing a complete

circuit between them.

The basics of electrical safety presented here help prevent many electrical hazards. Electrical safety can be pursued to greater
depths. There are, for example, problems related to different earth/ground connections for appliances in close proximity. Many
other examples are found in hospitals. Microshock-sensitive patients, for instance, require special protection. For these people,
currents as low as 0.1 mA may cause ventricular fibrillation. The interested reader can use the material presented here as a basis
for further study.

23.9 Inductance
Inductors

Induction is the process in which an emf is induced by changing magnetic flux. Many examples have been discussed so far, some
more effective than others. Transformers, for example, are designed to be particularly effective at inducing a desired voltage and
current with very little loss of energy to other forms. Is there a useful physical quantity related to how “effective” a given device
is? The answer is yes, and that physical quantity is called inductance.

Mutual inductance is the effect of Faraday’s law of induction for one device upon another, such as the primary coil in
transmitting energy to the secondary in a transformer. See Figure 23.39, where simple coils induce emfs in one another.
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Figure 23.39 These coils can induce emfs in one another like an inefficient transformer. Their mutual inductance M indicates the
effectiveness of the coupling between them. Here a change in current in coil 1 is seen to induce an emf in coil 2. (Note that "E, induced"

represents the induced emf in coil 2.)

In the many cases where the geometry of the devices is fixed, flux is changed by varying current. We therefore concentrate on
the rate of change of current, AI/At, as the cause of induction. A change in the current /| in one device, coil 1in the figure,
induces an emf in the other. We express this in equation form as

2 = AL’ 3.34

where M is defined to be the mutual inductance between the two devices. The minus sign is an expression of Lenz’s law. The
larger the mutual inductance M, the more effective the coupling. For example, the coils in Figure 23.39 have a small M
compared with the transformer coils in Figure 23.28. Units for M are (V - s)/A = Q - s, which is named a henry (H), after
Joseph Henry. Thatis, | H=1Q - s.

Nature is symmetric here. If we change the current /5 in coil 2, we induce an emf] in coil 1, which is given by

Al
emf; = -M——, 23.35
At
where M is the same as for the reverse process. Transformers run backward with the same effectiveness, or mutual inductance

M.

A large mutual inductance M may or may not be desirable. We want a transformer to have a large mutual inductance. But an
appliance, such as an electric clothes dryer, can induce a dangerous emf on its case if the mutual inductance between its coils
and the case is large. One way to reduce mutual inductance M is to counterwind coils to cancel the magnetic field produced.

(See Figure 23.40.)
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Figure 23.40 The heating coils of an electric clothes dryer can be counter-wound so that their magnetic fields cancel one another, greatly

reducing the mutual inductance with the case of the dryer.

Self-inductance, the effect of Faraday’s law of induction of a device on itself, also exists. When, for example, current through a
coil is increased, the magnetic field and flux also increase, inducing a counter emf, as required by Lenz’s law. Conversely, if the
current is decreased, an emf'is induced that opposes the decrease. Most devices have a fixed geometry, and so the change in flux
is due entirely to the change in current A through the device. The induced emf is related to the physical geometry of the device
and the rate of change of current. It is given by

f=-L—, 23.36
em At

where L is the self-inductance of the device. A device that exhibits significant self-inductance is called an inductor, and given
the symbol in Figure 23.41.
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Figure 23.41

The minus sign is an expression of Lenz’s law, indicating that emf opposes the change in current. Units of self-inductance are
henries (H) just as for mutual inductance. The larger the self-inductance L of a device, the greater its opposition to any change
in current through it. For example, a large coil with many turns and an iron core has a large L and will not allow current to
change quickly. To avoid this effect, a small L must be achieved, such as by counterwinding coils as in Figure 23.40.

A1H inductor is a large inductor. To illustrate this, consider a device with L = 1.0 H that has a 10 A current flowing through it.
What happens if we try to shut off the current rapidly, perhaps in only 1.0 ms? An emf, given by emf = —L(AI/Af), will oppose
the change. Thus an emf will be induced given by emf = —L(AI/At)=(1.0 H)[(10 A )/( 1.0 ms)]= 10,000 V. The positive
sign means this large voltage is in the same direction as the current, opposing its decrease. Such large emfs can cause arcs,
damaging switching equipment, and so it may be necessary to change current more slowly.

There are uses for such a large induced voltage. Camera flashes use a battery, two inductors that function as a transformer, and a
switching system or oscillator to induce large voltages. (Remember that we need a changing magnetic field, brought about by a
changing current, to induce a voltage in another coil.) The oscillator system will do this many times as the battery voltage is
boosted to over one thousand volts. (You may hear the high pitched whine from the transformer as the capacitor is being
charged.) A capacitor stores the high voltage for later use in powering the flash. (See Figure 23.42.)



Figure 23.42 Through rapid switching of an inductor, 1.5 V batteries can be used to induce emfs of several thousand volts. This voltage can

be used to store charge in a capacitor for later use, such as in a camera flash attachment.

It is possible to calculate L for an inductor given its geometry (size and shape) and knowing the magnetic field that it produces.
This is difficult in most cases, because of the complexity of the field created. So in this text the inductance L is usually a given
quantity. One exception is the solenoid, because it has a very uniform field inside, a nearly zero field outside, and a simple
shape. It is instructive to derive an equation for its inductance. We start by noting that the induced emf'is given by Faraday’s law
of induction as emf = —N(A®/At) and, by the definition of self-inductance, as emf = —L(AI/Af). Equating these yields

AP Al
emf = —NE = - E 23.37
Solving for L gives
L=N B 23.38
Al

This equation for the self-inductance L of a device is always valid. It means that self-inductance L depends on how effective the
current is in creating flux; the more effective, the greater A@/ Al is.

Let us use this last equation to find an expression for the inductance of a solenoid. Since the area A of a solenoid is fixed, the
change in flux is A® = A(BA) = AAB. To find AB, we note that the magnetic field of a solenoid is given by
B = ponl = uy % (Here n = N/Z, where N is the number of coils and £ is the solenoid’s length.) Only the current changes,

sothat A® = AAB = ,uoNA%. Substituting A@ into L = NAA—? gives

23.39

This simplifies to

(solenoid). 23.40

This is the self-inductance of a solenoid of cross-sectional area A and length £. Note that the inductance depends only on the
physical characteristics of the solenoid, consistent with its definition.

@ EXAMPLE 23.7

Calculating the Self-inductance of a Moderate Size Solenoid
Calculate the self-inductance of a 10.0 cm long, 4.00 cm diameter solenoid that has 200 coils.

Strategy

. . S NA . s .
This is a straightforward application of L = al ——, since all quantities in the equation except L are known.

Solution

Use the following expression for the self-inductance of a solenoid:



_ /J()NZA
==
The cross-sectional area in this example is A = 71> =(3.14...)(0.0200 m)’>= 1.26 x 1073 m?, Nis given to be 200, and the

length £ is 0.100 m. We know the permeability of free space is st = 47 X 107" T - m/A. Substituting these into the
expression for L gives

L 23.41

L = (4nx1077 T-m/A)(200)*(1.26x107> m?)

0.100 m 23.42

= 0.632 mH.

Discussion

This solenoid is moderate in size. Its inductance of nearly a millihenry is also considered moderate.

One common application of inductance is used in traffic lights that can tell when vehicles are waiting at the intersection. An
electrical circuit with an inductor is placed in the road under the place a waiting car will stop over. The body of the car increases
the inductance and the circuit changes sending a signal to the traffic lights to change colors. Similarly, metal detectors used for
airport security employ the same technique. A coil or inductor in the metal detector frame acts as both a transmitter and a
receiver. The pulsed signal in the transmitter coil induces a signal in the receiver. The self-inductance of the circuit is affected by
any metal object in the path. Such detectors can be adjusted for sensitivity and also can indicate the approximate location of
metal found on a person. (But they will not be able to detect any plastic explosive such as that found on the “underwear
bomber.”) See Figure 23.43.

Figure 23.43 The familiar security gate at an airport can not only detect metals but also indicate their approximate height above the floor.

(credit: Alexbuirds, Wikimedia Commons)

Energy Stored in an Inductor

We know from Lenz’s law that inductances oppose changes in current. There is an alternative way to look at this opposition that
is based on energy. Energy is stored in a magnetic field. It takes time to build up energy, and it also takes time to deplete energy;
hence, there is an opposition to rapid change. In an inductor, the magnetic field is directly proportional to current and to the
inductance of the device. It can be shown that the energy stored in an inductor Ej,q is given by

1
Eing = 5LP. 23.43

This expression is similar to that for the energy stored in a capacitor.

@ EXAMPLE 23.8

Calculating the Energy Stored in the Field of a Solenoid

How much energy is stored in the 0.632 mH inductor of the preceding example when a 30.0 A current flows through it?




Strategy
The energy is given by the equation Ejpg = %LI2 , and all quantities except Ejpq are known.
Solution

Substituting the value for L found in the previous example and the given current into Ejpg = %LI2 gives

Eng = 5LP

23.44
0.5(0.632 x 107> H)(30.0 A)>= 0.2841J.

Discussion

This amount of energy is certainly enough to cause a spark if the current is suddenly switched off. It cannot be built up
instantaneously unless the power input is infinite.

23.10 RL Circuits

We know that the current through an inductor L cannot be turned on or off instantaneously. The change in current changes
flux, inducing an emf opposing the change (Lenz’s law). How long does the opposition last? Current will flow and can be turned
off, but how long does it take? Figure 23.44 shows a switching circuit that can be used to examine current through an inductor as
a function of time.
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Figure 23.44 (a) An RL circuit with a switch to turn current on and off. When in position 1, the battery, resistor, and inductor are in series
and a current is established. In position 2, the battery is removed and the current eventually stops because of energy loss in the resistor. (b)
A graph of current growth versus time when the switch is moved to position 1. (c) A graph of current decay when the switch is moved to

position 2.

When the switch is first moved to position 1 (at # = 0), the current is zero and it eventually rises to [y = V/R, where R is the
total resistance of the circuit. The opposition of the inductor L is greatest at the beginning, because the amount of change is
greatest. The opposition it poses is in the form of an induced emf, which decreases to zero as the current approaches its final
value. The opposing emf is proportional to the amount of change left. This is the hallmark of an exponential behavior, and it can
be shown with calculus that

I=1y(1—e) (turning on), 23.45

is the current in an RL circuit when switched on (Note the similarity to the exponential behavior of the voltage on a charging
capacitor). The initial current is zero and approaches Iy = V/R with a characteristic time constant 7 for an RL circuit, given by
L

T=—, 23.46
R

where 7 has units of seconds, since | H=1 Q-s. In the first period of time 7, the current rises from zero to 0.6321y, since
I=1Iy(1-e"")=Iy(1 —0.368)= 0.6321. The current will go 0.632 of the remainder in the next time 7. A well-known
property of the exponential is that the final value is never exactly reached, but 0.632 of the remainder to that value is achieved in
every characteristic time 7. In just a few multiples of the time 7, the final value is very nearly achieved, as the graph in Figure
23.44(b) illustrates.





